
Acta Technica 62 (2017), No. 5B, 199�216 c© 2017 Institute of Thermomechanics CAS, v.v.i.

An improved LIDAR SLAM algorithm
based on FastSLAM for autonomous

vehicle

Li ChenXi2, Zhang Jun2, 3, Liu YuanSheng2,Jin

XinYu2,Li GuangJing2, Cheng Xu2

Abstract. In order to realize autonomous navigation of autonomous vehicles that don't rely

on GPS, an improved LIDAR SLAM method based on FastSLAM algorithm is proposed in this

paper. First, a large number of data obtained by LIDAR are prepossessed, including sparse points

removal, Voxel Grid, point cloud separation. Then, the processed data are used to make the point

cloud match of the adjacent frame by using the method of PLICP algorithm to obtain the coarse

positioning of the autonomous vehicle. After that, the particle scatter points are carried out near

the rough locations, and the Niche Technique Particle Swarm Optimization method is introduced

to locate the autonomous vehicle accurately. The map of LIDAR point cloud is represented by the

raster map. After getting the precise positioning of the autonomous vehicle, a local map which

carried by the particle is added to the global map to update the map. Finally, the system outputs

the map of the environment and the trajectory of the autonomous vehicle. The validity of the

proposed method is proved by the experiment on autonomous vehicle platform. The experimental

results show that the proposed technique could reduce the position error and successfully build the

map of the environment.
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1. Introduction

Simultaneous localization and mapping(SLAM) remains a key issue in the domain
of autonomous vehicles for navigation. It can describe as: place an autonomous
vehicle at an unknown location in an unknown environment and for the vehicle
to incrementally build a consistent map of this environment while simultaneously
determining its location within this map.

SLAM has been at the core of the autonomous robot system for many years and
it is more vital and challenging especially for outdoor mobile robots nowadays. Sig-
ni�cant SLAM investigation of autonomous robots has been performed during the
last decades. Autonomous vehicle is a kind of special autonomous robot. In recent
years, enormous interest in making autonomous vehicles more smarter continues
to increase rapidly. Competitions are established both at home and abroad, for in-
stance, DAPPA Grand Challenges and China Autonomous Vehicle Future Challenge.
Especially the 2007 Urban challenges [1], though many simpli�cation were made for
the purpose of competition, it is the �rst signi�cant demonstration of autonomous
driving for the vehicles themselves through a city-like environment.

There are two main kinds of SLAM solution in autonomous vehicle application:
Vision SLAM and LIDAR SLAM. SLAM with LIDAR is more popular as LIDAR
can provide accurate and ample range measurements information. Hence, this paper
also takes advantage of the 3D laser scan system to complete the SLAM process.

A good introduction of SLAM can refer to [2], which includes numerous classical
existing algorithms. For example, EKF, UKF, SEI, RBPF, FastSLAM, GraphSLAM
etc. The traditional algorithms [2] have been a great bene�t to humans, but unfor-
tunately, most of them are computationally and exist obvious limitations in their
practical application. FastSLAM is one of the powerful techniques to solve SLAM
problems, however the linear approximations of nonlinear functions and particle
depletion phenomenon are the obvious drawbacks of it.

The contribution of this paper is that a new LIDAR SLAM strategy which com-
bines PLICP and NTPSO is proposed for improving the obvious drawbacks of the
standard FastSLAM algorithm. The data source of the algorithm is only LIDAR
point cloud. Moreover, the experiment is veri�ed on autonomous vehicle platform,
and the e�ectiveness of the algorithm is proved.

The structure of the whole paper is organized as follows. The related work is
introduced in section2, the method of the proposed algorithm is presented in section3
and an improved LIDAR SLAM algorithm is presented in section4, including the
localization and the mapping technique. Then, experiments are conducted, the
results and discussion are presented in section5. In the end, conclusions are described
in section 6.

2. Related work

With the development of autonomous vehicle, 3D simultaneous localization and
mapping technology in unstructured environment grow in popularity. Among them,
LIDAR SLAM technology is one of the main method frequently used to solve the
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problem, and there are di�erent ways to reach the goal. One of the key issues of
LIDAR SLAM is the registration of the point cloud.

In point cloud registration problem, standard ICP algorithm[3] is usually used
to match laser returns between scans. ICP algorithm has been proved very e�ective
in building the map of the environment, however, the slow convergence and locally
optimal solutions are two main disadvantages of it. There are many researchers
devoted to overcome these shortcomings, and di�erent variations of ICP algorithm
are developed. Alismail H et al. [4] extend the ICP algorithm and take into account
inter-sample pose errors to estimate the continuous-time trajectory. Liu W et al.[5]
Combine the advantages of iterative closest point (ICP) and iterated sigma point
Kalman �lter (ISPKF) to solve LIDAR-IMU time delay calibration. Wolfgang Hess
et al.[6] combine scan-to-submap matching with loop closure and graph optimiza-
tion. A local grid-based SLAM approach is used to create the individual subset
trajectories, and all scans are matched to create loop closure constraints in their
background. Zhang J et al.[7] divide the complex SLAM problem into two algo-
rithm simultaneously. One algorithm performs odometry to estimate the velocity of
the laser scanner and a second algorithm to match and register the point cloud. And
the main method is to extract feature points from the LIDAR point cloud. Kumar G
A et al.[8] consider the typical geometric structure of indoor environments and they
use point-to-point scan matching algorithm from a horizontally scanning primary
LIDAR to calculate the position of the UAVs and a vertically scanning secondary
LIDAR to calculate the altitude. Besides, a Kalman �lter is also used to derive the
3D position by fusing primary and secondary LIDAR data.

Additionally, there are also other sensors used to do SLAM. López E et al.[9]
propose to integrate di�erent state-of-the art SLAM methods based on vision, laser
and inertial measurements using an Extended Kalman Filter (EKF).

3. The Method of The Proposed Algorithm

3.1. FastSLAM Algorithm

FastSLAM is based on R-B particle �lter SLAM, which uses particles to represent
the posterior of some variables, and all other variables are represented along with
some other parameter probability density functions. The essence of FastSLAM is
that for each particle, the error of a single map is conditionally independent. That
is, in the FastSLAM algorithm, localization and map construction can be considered
separately. FastSLAM uses particle �lters to compute the posterior path of a robot.

p (x0:t,mt|z0:t, u1:t) =

p(x0:t,mt|z0:t, ut) •
M∏
j=1

p(mj |x0:t, z0:t, u1:t)
(1)

For each feature in the map n(n=1,...,N), FastSLAM uses a separate estimator
p(mn|x0:t, z0:t) stands for its location. The advantage of FastSLAM is that the pro-
posal distribution is locally optimal. That is, conditional on available environmental



202 LI CHENXI, ZHANG JUN, LIU YUANSHENG, JIN XINYU, LI GUANGJING, CHENG XU

informationX
(i)

0:k−1Z0:k and U0:k,it gives the smallest possible variance in importance

weight w
(i)

k for each particle. However, it su�ers the particle depletion phenomenon.
The main steps of FastSLAM can be described as follows.

(1)Sampling
For each particle, it is generated by proposal distribution functions on the basis

of the previous generation of particles. Di�erent from R-B particle �ltering, the
proposal distribution function is as follows:

x
(i)
k ∼P (xk|X(i)

0:k−1, Z0:k, uk) (2)

Where

P
(
xk|X(i)

0:k−1, Z0:k, uk

)
= 1

CP (zk|xk, X(i)
0:k−1, Z0:k−1)

P (xk|x(i)0:k−1, uk)
(3)

And C is the normalizing constant.
(2) Weighting
Each particle has an important weight according to the importance function.

w
(i)
k = w

(i)
k−1C (4)

(3) Resampling
Resampling is accomplished by selecting particles of signi�cant weight from par-

ticle set
{
X

(t)
0:k

}N

I
instead of particles with small weights, including the associated

maps of the particle.
(4) Mapping
Perform an EKF update on the observed landmarks as a simple mapping opera-

tion with known vehicle poses for each particle.

3.2. Particle Swarm Optimization

Particle swarm optimization[10] (PSO) is a bionic algorithm based on swarm
intelligence which proposed by Kennedy and Eberhart in 1995. The algorithm is easy
to operate and implement, and it has a global searching ability for low dimensional
functions with a fast search speed.

In the PSO algorithm, each particle in the search space corresponds to a possible
solution of the problem to be solved. Suppose thatM particles are randomly initialof
in the search space of Ddimensions. The position of the ith particle is expressed as
Xi =

(
xi1, xi2, . . . xiD

)
and V i =

(
vi1, vi2, . . . viD

)
indicates the speed.

The best location of the particle itself in history from the beginning to the present
is denoted as P i

t the best location of the whole particle swarm experience is repre-
sented as Gt−1. Each particle iteratively updates the speed and location of itself
based on the two extreme values, update equation is as follows:

V i
t = ω • V i

t−1 + c1 • r1() •
(
P i
t−1 −Xi

t−1
)

+ c2 • r2() •
(
Gt−1 −Xi

t−1
)

(5)
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Xi
t = Xi

t−1 + V i
t (6)

r1 and r2 are the are random numbers between [0,1], ω is the inertia weight. In
general, the bigger value of ω , the stronger global search ability. Otherwise, the
local search ability is, c1 and c2 are the learning factors.

3.3. Niche Techniques

According to the above equation, in the standard PSO, the particle mainly relies
on the best position of individual history and the best position of global history
to guide its position update in the search space. In the search process, if the best
location of the individual history is gathered in a locally optimal solution region
of the space, all particles are rapidly approaching the region. For an optimization
problem PSO algorithm can only �nd an optimal solution, and it can not guarantee
that the optimal solution is di�erent, so this leads to the loss of the population
diversity falling into a local optimum, and premature convergence or stagnation of
search will occur. In order to avoid the phenomenon, niche technique strategy is
introduced into PSO algorithm.

Niche technology[11] is a group stochastic optimization technique for multiple
optimal solutions in multi-mode problems. It is derived from the genetic algorithm
domain. Niche is derived from ecology, which refers to a small living environment
in which a species is located. In arti�cial systems, niche techniques are mainly used
to improve the global search performance of swarm based stochastic optimization
algorithms. Niche particle swarm optimization algorithm is divided into two stages:
The �rst stage is to �nd niches for each particle depending on the distance between
the particles. In the second stage, the particle swarm optimization (PSO) algorithm
is used to update the location and speed of each niche, and it must ensure that
the optimal value of the group of particle swarm is only in the small habitat group.
Classical niche technology has three mechanisms: preselection mechanism, sharing
mechanism, and exclusion mechanism. A small niche technology based on the exclu-
sion mechanism is adopted in this paper. The main idea is to measure the similarity
between individuals according to some measure function, and then crowd out simi-
lar individuals. As the iterative process is carried out, individuals in the group will
gradually be classi�ed into each small niche, thus maintaining the diversity of the
group.

4. An Improved LIDAR SLAM Algorithm

The localization and mapping process of improved algorithm based on FastSLAM
proposed in this paper are mutually aided. First of all, it needs to get the point
cloud prepossessed in the positioning process. Next the PLICP algorithm is used
to complete the crude positioning of the autonomous vehicle, and then the particles
scattered points in the rough location near by the location of the particle. Finally,
in order to optimize particles and �nd the best particle which closes to the actual
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situation, the NTPSO optimization technology will be applied. After that, the local
map carried by the optimal particle is converted to the global coordinate system to
update the global map.

Fig. 1. The software system for LIDAR SLAM

4.1. Localization

4.1.1. Laser Scan Data Process In this paper, a 64 bit 3D-LIDAR for velodyne
is mounted to the top of the autonomous vehicle. It provides the 3-dimensional
but sparse point cloud of the surrounding environment with the frequency of 10 Hz.
That is, there are 10 frames data are returned per second. The huge data are a big
burden to its real time requirement. There is no doubt that we need to deal with
the numerous data sets.

(1)Sparse points removal
As mentioned above, due to the sparseness of the point cloud returned by the

Velodyne in far away area. It can't represent accurate environmental information
but just as a load to the algorithm. So this paper chooses a valid reasonable distance
to �ltering out the invalid points. During our experiment, the maximum distance is
set at 70 meters.

(2)Voxel Grid
Though down sampling the dense point cloud is essential in our algorithm, it

needs to retain the detail information of the environment as much as possible. To
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achieve this goal, and Voxel Grid �lters seem a better solution.
To vocalize the point cloud, we build a 3D cubic voxel grid using the point cloud

P ,and M stands for the number of the points. Then, for each Voxel calculating the
focus of all points using �ltering like this:

x = 1
M

M∑
i=1

xi

y = 1
M

M∑
i=1

yi

z = 1
M

M∑
i=1

zi

(7)

(3)Point cloud separation
The point cloud contains both ground points setG and above-ground points set

AG . This paper aims at achieving the pose estimation of the vehicle by register
the point clouds of G. Obviously, the ground points are meaningless to our regis-
tration. Hence, the above-ground points[12] are extracted using a RANSAC plane
�lter algorithm from the points cloud map.

4.1.2. Localization based on PLICP and NTPSO LIDARs have been widely used
in autonomous vehicle �led, because it can provide ample and accurate information
of the surrounding environment. During the last decades, feature extract[13] is
a mainstream method used in SLAM solutions, including EKF, GraphSLAM etc.
What's more, data association usually must be associated with it. There is no doubt
that the computation cost of dealing with the huge points is expensive. In order to
reduce the computational cost and improve the positioning accuracy, a niche particle
swarm optimization algorithm based on PLICP point cloud matching is proposed in
this paper.

(1)Vehicle pose coarse estimation
Traditional particle �lter requires a large number of particles to get closer to the

real position[14] of particles, and this method signi�cantly reduces the e�ciency of
the algorithm. In this paper, the rough estimation of pose is obtained by the PLICP
algorithm which is used to match the point cloud of adjacent frames. The purpose
of rough estimation of position and orientation is to �nd the high probability region
of autonomous vehicle.

One of the main merits of scan matching is that it doesn't need to do feature
extract in task execution. Therefore, the time consumption will be reduced, and a
more accurate and FastSLAM approach will be presented.

Traditional scan matching method is mainly ICP[15] and its deformation[16],
such as MBICP. It has a high requirement for its initial value, or else, the result of
the method will be divergence and it would be a disaster for SLAM.

PLICP scan matching uses the point-to-line principle to replace the point-to-
point principle of ICP. That is, when a points �nds the correlation point, it doesn't
just �nd the nearest point with it in current scanyt, but it will �nd two points which
are closer to itself, j1i and j2i , then compose a segment point j1i − j2i , and the PLICP
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process instructions are shown below.

Fig. 2. The algorithm principle of PLICP method

The primary input reference scanned data was recorded as y1t in the experiment,
the points among them is represented as pi,a second scan data yt,the points among
them is represented as pj .q0,a �rst guess for the roto-translation to be found. Sref

stands reference surface produced by �rst scanning data yt−1, it is a polyline obtained
by connecting su�ciently close points. Sobjstands for the target point surface set
produced by scanning data yt. The index i refers to the points in the scan ,and
index j refers to the points in . In the end, index k refers to the iterations of the
algorithm.

The point-to-line metric is as follows:

min
qk+1

∑(
nTi
[
pi ⊕ qk+1 −Π

{
Sref , pi ⊕ qk

}])2
(8)

The steps are repeated until convergence or termination of the cycle. It has been
proved that the above method is converges, and it converges better than average
ICP. PLICP can reduce the matching times and much closer to the real distance.

Two coordinates are de�ned in this paper. They are the local system (xl, yl, zl)
which the origin is lidcoordinated and the world coordinate system(Xw, Yw, Zw) with
the arti�cially set origin. Xw

Yw
Zw

= R3×3 ×

 xl
yl
zl

+ t3×1 (9)

First, according to the current guessqk = (tk, θk), the coordinate transformation
between the second sets of scan data to the �rst scan data is completed, the point
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Fig. 3. Coordinate explanation of the SLAM system.

piis converted to pointpwi :

pwi
4
= pi ⊕ qk = R (θk) pi + tk (10)

For each point pwi , �nd the closest two points in the �rst set of data, j1i and j2i
respectively. The corresponding relation is called Ck for all points to line segments in
step k. Consisting of a series of arrays < i, j1i , j

2
i >, indicating that point i matches

line segments j1i − j2i .
And the error function is:

J (qk+1, Ck) =
∑
i

(
nTi

[
R (θk+1) pi + tk+1 − pji1

])2
(11)

This is the sum of the distances between the lines from the point i to the con-
taining segment.

Getting the qk+1 method is similar to that in the paper [10] and is no longer
repeated.

After �nding the minimum value of qk+1, and then the rotation matrix and the
translation matrix[17] M will be found.

M t
t−1 =

[
R
0 0 0

t
1

]
(12)

Then the position of the autonomous vehicle at the t moment xDt would be got.

x
(i)
t = f(xt−1, R, t) + θ

(i)
t (13)

(2) Particle update to complete pose optimization
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Because of the existence of various noises and errors, the rough estimate ob-
tained by the PLICP algorithm is only the high probability region of the pose of
the autonomous vehicle. Therefore, this paper proposes optimizing the pose of the
autonomous vehicle. In this paper, particle scattering is carried out near the coarse
estimate, and the particle swarm optimization algorithm is used to optimize the
position of particles.

The position of each particle is optimized, and the position and attitude of each
vehicle represented by each particle are updated by using the speed and position
equations in the PSO algorithm:

V D
t = ω • V i

t−1 + c1 • r1 •
(
xDpbest − xDt

)
+ c2 • r2 •

(
xgbest − xDt

)
(14)

xD∗t = xDt + V D
t (15)

xDpbestand xgbestrespectively represent the local optimum and global optimum of

the predicted value of the autonomous parking space. xD∗t is the updated pose.
(3)Niche technique
Then, by using the appropriate niche radius, the Gauss mutation operator is used

to make the random disturbance, which ensures that each niche has only one �ne
particle, In this way, the diversity of the population is maintained, and the searching
ability of the particles is also improved. This paper uses niche technology based on
crowding out mechanism. Calculate the distance between two particles:

D(xn∗t , xm∗t ) = |xn∗t − xm∗t | (16)

n,m = 1, 2, ..., N (n 6= m) N is the number of particles.
If the distance between two particles is less than the setting threshold, random

disturbance by Gaussian mutation operator is implemented, until reach the testing
number of loop, or the distance between the two is greater than the niche radius.

xn∗t = xn∗tSmaller • (1 + c3 • d3) (17)

xn∗t stands the pose after the disturb, c3 is disturbance coe�cient, d3 is an matrix
of 1*3, whose elements are random numbers that obeys the standard.

4.2. Mapping

In this article, we use a grid map representation to represent the map. Scanned
cloud information is divided into grids. Each of which has a size of 20*20*20(cm),
0 indicates that the grid is not occupied, and 1 indicates that the grid is occupied.
In this paper, the prior scanned map is used as the initial global map. When the
autonomous vehicle is moving, the position and pose are determined by the posi-
tioning algorithm mentioned above. When the PLICP algorithm and the NTPSO
algorithm[18] are used to obtain the particles which represent the vehicle posed, and
we also obtain the local point cloud map of the particles at the same time.
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4.2.1. Particle Weight Calculation For all of the above particlesN , Firstly, the
raster map of the local point cloud carried by each particle is converted to the global
coordinate system, and then a match[19] between the two maps will be made.

The weight calculation formula can be expressed as:

wn∗
t =

local raster map

global raster map
(18)

The matching degree of the two maps will be used as the importance weight of
the particles.The better the match degree, the greater the weight, and the worse the
matching degree, the smaller the weight.

4.2.2. Resampling Set degradation detection formula:

Neff = 1/

N∑
n=1

(wn∗
t )

2
(19)

If Neff is less than the default threshold, then the resampling[12] is performed.
After �nding in the optimized particles, the local coordinates of the local cloud

points obtained by the optimized particles are converted into global coordinate rep-
resentation, and the local map is added to the global map. Thus, completing the
update of the global map.

5. Experiments and results

5.1. System Overview

The experiment was carried out on the autonomous vehicle platform at Beijing
Union University. As showed in Figure 4, the 64-line LIDAR is placed on the roof
of the autonomous vehicle.

One of the advantages of the proposed algorithm is that only the data of a
single sensor[21] is used and this avoids data calibration and fusion of di�erent data
sources. The sensor is a Velodyne HDL-64 LIDAR. We will use data from this sensor
to illustrate the proposed method. The laser scanner has 360◦ �eld views and 64
lines/s scanning rate. It returns 133333 points per second. Here, note that the
coordinates of the initially returned point cloud is in the local coordinate system
mentioned above, and it will project into the world coordinate after the calculation
of the PLICP algorithm.

5.2. Experiment Environments and Procedures

In this paper, environment information will be scanned by human as priori map
beforehand, and the initial pose of the vehicle is recorded. The 3D laser point cloud
collected from the experimental platform of autonomous vehicle is processed by the
improved SLAM algorithm proposed in this paper. The processing of the initial
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Fig. 4. Autonomous vehicle platform of Beijing Union University

Fig. 5. Velodyne LIDAR

point cloud includes the aforementioned remove the sparse points, Voxel grid and
point cloud separation. Next, the PLICP algorithm is the application to do point
cloud registration of the cloud point after pretreatment, and in order to reduce
the time consumption, the KD-tree is also applied in the algorithm. After that,
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the transformation matrix R and t of the autonomous vehicle are obtained. As
the experimental environment and site are too large, this paper intercepted part of
the experimental site for experimental explanation, and the registration results are
shown below.

Fig. 6. Point cloud before preprocessing

The �gure above shows two local point cloud maps and their application before
and after the PLICP algorithm matches. Figure 6 shows the point cloud of the two
local frames before the algorithm is processed. Figure 7 shows the results after two
frames of point cloud matching. The red points represent the local point cloud of
the yt−1th scan, and the green points represents the local cloud of the ytth scan.

In this paper, the experimental environment is the real suburban road lane.
District Garden Expo test �eld in Fengtai of Beijing City, there are pedestrians,
vehicles and non pedestrian vehicle, the Garden Expo satellite map is shown in
Figure 8.

In the environment mentioned above, the laser SLAM algorithm proposed in this
paper enables the intelligent vehicle to navigate autonomously in the environment,
and simultaneously records and outputs the real-time navigation trajectory and the
environment map. In order to make a comparison about the experiment, three
groups of experiments were carried out in this paper, namely, manual acquisition
of map trajectories under the GPS positioning function, autonomous driving under
the proposed algorithm and autonomous driving under the FastSLAM algorithm.
Among them, the trajectory of GPS is taken as the standard route, and the e�ec-
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Fig. 7. Point cloud after preprocessing

Fig. 8. District Garden Expo test �eld in Fengtai of Beijing City

tiveness of the proposed algorithm is illustrated by comparing the trajectory of the
two SLAM algorithms with the GPS trajectory.

As we can see from the above picture, the point cloud map of the environment
was established, and the red arrow stands for the pose of the autonomous vehicle
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Fig. 9. Description of the localization and mapping process

of each moment and it is represented by particles in the �gure. These positions are
connected together to become the trajectory of the autonomous vehicle.

5.3. Experiment Results and Analyse

As showed in Figure 10, the real-time trajectory plots for three di�erent local-
ization algorithms are obtained.

Fig. 10. Localization results comparison of GPS, the proposed SLAM method and
FastSLAM

The localization results are shown in Figure 10 where the blue line represents the
standard trajectory of GPS which is formed by an experienced driver, and the green
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line represents the trajectory of FastSLAM algorithm, and the red line represents
the trajectory of proposed SLAM method of this paper. It is obvious that the result
of the proposed method is better than FastSLAM.

In order to further analyze the positioning accuracy of the two algorithms, 6
experiments were carried out respectively for each algorithm, and the error and
variance of per meter of the location were analyzed as follows table.

Table 1. Error of real time localization

Error
mean
x-
axis(m)

Error
vari-
ance
x-
axis(m)

Error
mean
y-
axis(m)

Error
variance
y-
axis(m)

FastSLAM 0.4523 0.0875 0.4468 0.7776

Proposed
method

0.2506 0.0748 0.2483 0.5998

Comparing the error mean of the two di�erent SLAM method, the position-
ing error has been reduced from 44.9cm of FastSLAM to 24.94cm of the proposed
method.

In addition, one of the advantages of the improved FastSLAM algorithm is the
reduction in the number of particles used, we have counted the particle number of
the particle �lter used in the experiment of the two SLAM algorithms to complete
the process of SLAM technology, and the time execution result is showed in the
following table.

Table 2. Numbers of particles of the two SLAM algorithm

Numbers
of parti-
cles

Environment Execution
time/s

FastSLAM2 25 3km 1262.36

Proposed
method

25 3km 841.67

It is obvious that the proposed method needs fewer particles than FastSLAM
algorithm. Besides, the proposed method reduces the time consumption.

At the same time, the PLICP algorithm is used to align each pair of the local
point cloud maps, and �nally the global map of the environment will be successfully
built. Figure 11 shows the mapping results of the proposed SLAM method, and the
red line stands the localization results of the algorithm, namely the trajectory of the
autonomous vehicle.
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Fig. 11. Global Point cloud map of Garden Expo area building by the algorithm
of this paper and the real-time trajectory of the autonomous vehicle

6. Conclusion

The algorithm proposed in this paper is mainly used to solve the autonomous
vehicle's safety localization and navigation. As we can see from the experiment, it
can successfully complete the localization and build the map of the environment si-
multaneously. The algorithm uses fewer particles to achieve more accurate position
with the combine of PLICP and NTPSO function, and it improves the e�ciency
of the SLAM process. Besides, the proposed method has been tested on the au-
tonomous vehicle platform of BUU. The results of the experiment demonstrate the
e�ectiveness of the method, and as a contrast. It also shows that the method has
the advantage over FastSLAM within a shorter time. With the continuous explo-
ration of autonomous vehicle laser SLAM technology and its mature development,
laser SLAM technology will be extended to more complex unstructured environment
like dynamic and three-dimensional application. In the near future, the proposed
technique will be applied to the autonomous vehicles application along with the
combination of GPS, visual SLAM, or even with IMU, odometer for auxiliary at the
same time. It makes the vehicle to get more rich source information and more com-
prehensive environmental information, so that it can realize fully safety self-driving
of the autonomous vehicle.
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